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SUMMARY

Multiaxialloading,especiallyat elevatedtemperature,can cause the inelasticresponseof a material

to differsignificantlyfrom that predictedby simpleflow rules,i.e.,yon Mises or Tresca.To quantify

some ofthese differences,the cyclichigh-temperature,deformationbehaviorofa wrought cobalt-base

superalloy,Haynes 188,isinvestigatedunder combined axialand torsionalloads.Haynes 188 iscurrently

used in many aerospacegas turbineand rocketengineapplications,e.g.,the combustor linerforthe T800

turboshaftengineforthe RAH--66 Comanche helicopterand the liquidoxygen postsin the main injector

ofthe space shuttlemain engine.The deformationbehavior ofthismaterialisassessedthrough the exam-

inationofhysteresisloopsgeneratedfrom a biaxialfatiguetestprogram. A high-temperatureaxial,tor-

sional,and combined axial-torsionalfatiguedata base has been generatedon Haynes 188 at 760 °C.

Cyclicloadingtestshave been conducted on uniform gauge sectiontubularspecimensin a servohydraulic

axial-torsionaltestrig.Test controland data acquisitionwere accomplishedwith a minicomputer. The

fatiguebehavior of Haynes 188 at 760°C under axial,torsional,and combined axial-torsionalloads,and

the monotonic and cyclicdeformationbehaviorsunder axialand torsionalloads,have been previouslyre-

ported.In thispaper,the cyclichardening characteristicsand typicalhysteresisloopsinthe axialstress

versusaxialstrain,shear stressversusengineeringshearstrain,axialstrainversusengineeringshear

strain,and axialstressversusshear stressspacesare presentedforcyclic,in-phaseand out-of-phase,axial-

torsionaltests.For in-phaseteststhreedifferentvaluesof the proportionalityconstant,A (ratioof engi-

neeringshear strain amplitude to axial strain amplitude, _/a/_a), are examined, viz., 0.86, 1.73, and 3.46.

In the out-of-phase tests, three different values of the phase angle, _ (between the axial and engineering

shear strain waveforms), are studied, viz., 30 °, 60 °, and 90 ° with A -- 1.73. The cyclic hardening behav-
iors of all the tests conducted on Haynes 188 at 760 °C are evaluated using the yon Mises equivalent

stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Compar-
isons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (A

_- 1.73 and _ -- 0°) and out-of-phase (A --- 1.73 and _b -_ 90 °) axial-torsional fatigue tests. These compar-

isons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial

stress-strain and shear stress-engineering shear strain curves.

INTRODUCTION

The imperatives of higher efficiency and improved performance in gas turbines require that the rotat-

ing speeds, power extraction per turbine stage, and operating temperatures all be increased beyond the



current levels. This may mean that the materials used in the hot section are being pushed up to, and

beyond, their recommended usage limits. It is important that the deformation behavior of these materials
be understood at temperatures and loading conditions that approximate the service conditions of the

component. Design decisions for these materials are currently being made with material properties and
data bases that have been extrapolated from lower-temperature, uniaxial fatigue and deformation data.

These extrapolated data may imply a behavior that is significantly different from the material's actual

response under service conditions.

The cyclic deformation behavior of polycrystalline metallic materials, under combined axial-torsional

loading conditions, has been the subject of several investigations (refs. 1 to 9). These studies were con-

ducted on tubular specimens of low-alloy steels (refs. 1, 3, and 7), stainless steels (refs. 1, 2, and 4 to 8),

and a superalloy (ref. 9) at both room (refs. 1 to 7 and 9) and elevated (refs. 1 and 8) temperatures. Dif-

ferent types of waveforms, including sinusoidal (refs. 2 to 9), triangular (refs. 1, 4, and 6), and trapezoidal

(refs. 4 to 7) were employed as command inputs for the axial and engineering shear strains. In this study,
the cyclic deformation behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated

under axial-torsional loading conditions at 760 oC. Haynes 188 is currently used in many aerospace gas

turbine and rocket engine applications, e.g., the combustor liner for the T800 turboshaft engine for the

RAH-66 Comanche helicopter and the liquid oxygen posts in the main injector of the space shuttle main

engine.

The objective of this paper is to disseminate the cyclic deformation data collected in the course of

performing high-temperature, axial-torsional, fatigue tests on Haynes 188, and to relay some observations
about the collected data. Various independent, as well as simultaneous, combinations of axial and tor-

sional loads were imposed on 36 specimens in the test program. The following axial-torsional deformation

results are discussed: (1) the effect of the ratio of the engineering shear strain amplitude to the axial

strain amplitude (proportionality constant, A) on the in-phase (proportional) deformation behavior, and

(2) the effect of phase angle (¢) between the axial and engineering shear strains (out-of-phase or nonpro-
portional) on the cyclic and stabilized stress response. The cyclic hardening under different axial-torsional

loading conditions is presented through plots of hysteresis loops at several cyclic increments, and plots of

stress range versus number of cycles. In addition, the presentation format consists of normalized plots of

stable (near half-life) axial and torsional hysteresis loops as well as normalized plots of the axial strain

versus engineering shear strain and the axial stress versus shear stress for the near half-life conditions.

Also, results of regressed fits to the Ramberg-Osgood equation with the stabilized cyclic deformation data
under various axial-torsional loading conditions are reported. The stabilized deformation behaviors of the

in- and out-of-phase axial-torsional experiments are compared.

All tests described in this paper were conducted in air, at 760. C. This temperature was chosen

because Haynes 188 displays a marked drop in ductility at this temperature (ref. 10). This ductility

minimum is most likely due to complex interactions between mobile solute atoms and dislocations.

Understanding the deformation behavior at this temperature will advance our ability to assess this

material's usefulness in advanced gas turbine applications.
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EXPERIMENTAL PROGRAM

The cobalt-base superalloy, Haynes 188, was supplied by a commercial vendor in the form of hot

rolled, solution-annealed, round bars with a nominal diameter of 50.8 mm (manufactured to Aerospace

Material Specification 5772A). The chemical composition of the superalloy in weight percent is as follows:

<0.002 S; 0.002 B; 0.012 P; 0.1 C; 0.4 Si; 0.034 La; 0.75 Mn; 1.24 Fe; 13.95 W; 21.84 Cr; and 22.43 Ni;

with cobalt making up the balance. The grains in the supplied material were equiaxed and ranged in size

from 45 to 65 #m. The specifications for machining the specimens were explicitly designed to minimize

surface work hardening. No post-machining heat treatment was performed on the tubular specimens.

Thin-walled tubular specimens with a nominal outer diameter of 26 mm, a nominal inner diameter of

22 mm, and a nominal gauge length of 25 mm (fig. 1) were used in all experiments. The tubular specimens

in the axial-torsional test program were heated to the test temperature of 760 °C using a 10 kHz, 10 kW,

induction heating system with a three coil (each of the coils is independently moveable) fixture. In all

tests, the temperature in the gauge section was maintained to within =i=7 °C of the control temperature.

A servohydraulic axial-torsional load frame capable of =i=223 kN of axial load and =t:2.26 kN-m of torque

was used in all experiments. A commercial, water-cooled, axial-torsional extensometer was employed for

strain measurement. Further detail on the testing equipment can be found in references 11 to 13.

Data acquisition and test control were accomplished with a minicomputer and associated electronic

hardware. Detailed information on the data acquisition and control hardware and software for the cyclic

axial-torsionai experiments can be found in reference 13. Data were acquired at 500 points per loading

cycle to ensure that significant, high-rate, deformation phenomenon, and the peak stresses and strains,

were accurately acquired.



Constant strain-rate (triangular) axial and/or engineering shear strain waveforms were imposed on

all specimens. The frequency of both of the command waveforms was 0.1 Hz for all tests, therefore the

strain rate from test to test varied depending on the amplitudes of the strain waveforms. The difference
in the strain rates between the smallest and the largest amplitude tests was, at most, a factor of 7.

Because the differences in strain rates were relatively small, little or no strain rate effect on the

deformation behavior is expected in the tests performed. The engineering shear strain at the mean radius

of the tubular specimen was controlled in all the experiments that had an imposed engineering shear

strain. In calculating the shear stress at the mean radius of the specimen, the shear stress was assumed to

be uniformly distributed through the thickness of the tubular specimen. In all experiments, the test

control software incorporated a graduated five cycle load up. This allowed for better test control at the

onset of serrated yielding behavior that is often displayed by Haynes 188 when large plastic strains are

present. In almost every case this five-cycle loadup resulted in some initial plastic deformation in the

specimens, therefore, some initial hardening was introduced before the first cycle data were collected.

The test matrix of the axial-torsional test program is shown in table I. Five different values of the

proportionality constant, A, and four phase angles, 4, have been investigated in the axial-torsional

experiments. The number of tests conducted for each test condition, which is given by a set of A and

values, is shown in table I. In figure 2, a simple schematic is presented of the imposed strains during an

in-phase and an out-of-phase axial-torsional fatigue test.

RESULTS

The effect of strain cycling on the shapes of the hysteresis loops is illustrated in figures 3 to 6. Axial

and torsional loops at 1, 10, 100, and 1000 cycles are plotted for cyclic axiai-torsionai experiments per-

formed with phase angles, 4, of 0 °, 30 °, 60 °, and 90 °. In all cases, Haynes 188 exhibited cyclic strain

hardening, which is characterized by an increase in the stress range and an associated reduction in the

width of the hysteresis loop.

To facilitate direct comparison of the axial and shear cyclic hardening rates of specimens that were

subjected to in-phase (proportional) strain paths with different ratios of engineering shear to axial strain
amplitudes, the stress ranges were normalized by the first cycle's (after the five cycle loadup) stress range.

Plots of the normalized axial component of the in-phase cyclic stresses versus the number of cycles and

the normalized shear component of the in-phase cyclic stresses versus the number of cycles are shown in

figures 7 and 8. For the axial component of stress, all the in-phase axial-torsional tests exhibited similar

cyclic hardening rate, which was lower than that observed in the axial test. For the shear component of

stress, all the in-phase tests exhibited a cyclic hardening rate that was similar to the torsional test.

The cyclic hardening rates of specimens subjected to the same nominal axial and engineering shear
strain amplitudes, with phase angles between the axial and torsional command waveforms of 0 °, 30 °,

60 °, and 90 °, are compared in figures 9 and 10. In these figures the axial and shear stress ranges are

plotted against the number of cycles. Both the axial and shear stress components clearly indicate higher

first cycle hardening as the phase angle, 4, increases from 0 ° to 90 °. This pattern of increased hardening

with phase angle is maintained throughout the life of the out-of-phase tests. In plotting the near half-life

hysteresis loops from the out-of-phase tests, the stress and strain components were normalized with half

the range (amplitude) of the corresponding variable, so that the shapes of the hysteresis loops for differ-
ent ¢ values could be compared. By normalizing the variables, the isotropic hardening effects are con-

cealed so that the kinematic effects can be compared directly. The maximum and minimum values of the

strains and stresses in the near half-life axial and torsional loops are listed in table II. Figures 11 to 14



arethenear half-life, normalized, axial (a/aa) versus e/ca) and torsional (r/r a versus "_/'_a) hysteresis

loops from four specimens, which were subjected to the same nominal axial and engineering shear strain

amplitudes but with four different phase angles (@) between the strain waveforms. Also displayed in each

figure are the normalized plots of the axial strain (e/ca) versus the engineering shear strain (_/'_a) and

the axial stress (a/aa) versus the shear stress (r/ra). The normalized axial strain--engineering shear
strain plots display the strain path imposed on the specimen. The labels A, B, C, and D in figure 2 illu-
strate where each of the strain reversals occur. The labels are repeated at the corresponding points in the

normalized figures (figs. 11 to 14). The small discontinuities seen in the normalized axial strain versus

engineering shear strain and the normalized axial stress versus shear stress plots are due to a seal friction

problem in the axial actuator of the test rig, which resisted all attempts of compensation.

For each axial-torsionai test conducted, the von Mises equivalent stress, von Mises equivalent strain,

the maximum shear stress and the maximum engineering shear strain (Tresca stress and strain) were

computed from the near half-life hysteresis loop data. For each of these quantities, the calculation was

performed at each of the 500 collected data points around the cycle to determine the maximum and mini-
mum values. Performing the equivalent and maximum shear calculations in this way was not specifically

necessary for the case of the in-phase tests, but it was required for the out-of-phase experiments because
the maximum values of the equivalent or maximum shear stress and strain may not coincide with peak

axial or torsional stresses and strains in the out-of-phase experiments.

An effective Poisson's ratio (Ueff) was computed based on the measured axial stresses and strains. At

each point around the hysteresis loop, %ff was computed with the following equation:

Ueff = [_eVe-_ epVp]e

(1)

where ee : a/E and • = • - ee" Values of E -- 170.2 GPa, G -- 64.4 GPa, and % -- 0.321, determined
from the averages of a_l measured values of Young's and shear moduli were used in computing l'ef f. A

value of 0.5 was assumed for Vp. For the seven tests performed with _ --- _ (torsional loading only), a
value of 0.5 was assumed for uef r For axial-torsional loading, the yon Mises equivalent stresses and
strains were determined by:

!

---= I $2 3 ,_2 (2)

eeq _ ÷ 4(i + Veff)2

_'eq = _O'2 -]- 3r2 (3)

The maximum shear stress and maximum engineering shear strain (Tresca stresses and strains) within a

given cycle of loading for the axial-torsionai tests were determined according to:

"_max = _(1 + Veff) 2 _2 + ,_2 (4)
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1 _/a2 + 4r 2 (5)
1"Ii]t_[ = --

2

The maximum and minimum of these calculated valueswere stored and used to calculate the range and

amplitude of each variable (this was done to prevent any bias due to mean stresses or strains). The sign

(positive or negative) of each of the calculated values was determined by the sign of quantity that had
the larger absolute magnitude. The results of these computations for the in-phase experiments are shown

in figures 15 (yon Mises) and 16 (Tresca). Out-of-phase test results are shown in figures 17 (yon Mises)

and 18 (Tresca). In the yon Mises equivalent stress-strain figures, a curve representing the Ramberg°

Osgood equation fit to the cyclic axial data (A = 0) is also plotted. In the maximum shear stress versus

maximum engineering shear strain figures, a curve representing the Ramberg-Osgood equation fit to the

cyclic torsional data (A - -) is shown. In all four plots both the cyclic axial (A = 0) and cyclic torsional

(A = oo) data are also displayed. Some axial strain ratchetting 1 was observed in the torsional experiments

(A = oo) but it was not used to compute the yon Mises or Tresca strains.

The Ramberg-Osgood stress-strain curve obtained from the cyclic axial data seems to represent the

in-phase axial-torsional data better than the maximum shear stressmmaximum engineering shear strain

curve obtained from the cyclic torsional data. Both the yon Mises equivalent stress-strain curve and the
maximum shear stress--maximum engineering shear strain curve under estimate the cyclic hardening in

the out-of-phase axial-torsional tests where ¢ - 90 °. Two out-of-phase axial-torsional tests with ¢ - 90 °

were conducted with sinusoidal waveforms also at a frequency of 0.1 Hz. The cyclic hardening in these

tests was similar to the cyclic hardening in tests conducted with triangular waveforms (figs. 17 and 18),

indicating that the effect of waveform (or small differences in strain rate) is not significant for Haynes
188 at 760 °C.

Table III contains constants for a Ramberg-Osgood type of cyclic stress-strain relation for the various

loading conditions. The forms of these relations are:

I ll/n 'a a

+ [g;j
for the axial stress-strain relation

or (6)

_+
G

for the shear stress-strainrelation

These constants were determined in a previous study (ref. 18) by performing linear least-squares fits to

the logarithms of the near half-life stress amplitudes versus the logarithms of the near half-life inelastic
strain amplitudes for each of the loading conditions listed in table III. The axial and shear stresses

corresponding to the axial and engineering shear strains of 0.5 percent are also listed in table III. In both

1Similar axial strain ratchetting has been observed under torsional loading by several researchers

(refs. 14 to 17). In the majority of the torsional tests (A -- oo) on Haynes 188 at 760 °C, the mean axial
ratchetting strain was positive and increased in magnitude with the number of cycles. However, for all

the torsional experiments, the magnitude of the mean axial ratchetting strain near half-life was relatively

small compared to the amplitude of the imposed engineering shear strain. Therefore, the axial ratchetting

strain was not used in computing the yon Mises and Tresca strains for the torsional experiments.
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the axialand shearcases,cyclicstressesare lower under in-phaseloading(A --1.73,_ = 0°),and higher

under out-of-phaseloading(A = 1.73,_ = 90°) than the stressescorrespondingto the individualaxial

(A --0) or torsional(A = _) loadingcases.

DISCUSSION

The cycledependent hardening rate,as indicatedby the normalizedstressvaluesforthe in-phase

tests(figs.7 and 8),seems to be independentofany nonzero proportionalityconstant,A. However the

normalized stressrange in the axial(A --0) testexhibiteda slightlyhighercycledependent hardening

ratethan the threein-phasetests.Similarbehaviorwas not observed in the normalizedshearstress

ranges.The reasonforthisdifferencein the axialand torsionalhardening ratesofthe in-phasetestsisnot

apparent at present.In the out-of-phasetests,both the axialand shearstressrangesexhibitedsimilar

cycledependent hardening patterns.

Itcan be seen infiguresII to 14 thatthe phase angle,_b,between the axialand engineeringshear

straincommand waveforms has a substantialeffecton the near half-lifekinematichardening behavior.

The widths ofboth the axialand torsionalhysteresisloopsdecreasemarkedly with each 30° increment of

phase angle.This can alsobe observed infigures3 to 6,9,and 10 which show the decreasein the widths

of the hysteresisloopsand the correspondingincreasein the axialand shear stressrangesas the phase

angleincreasesfrom 0° to 90°.Other researchershave reportedsimilarbehaviorunder out-of-phase

axial-torsional loading (refs. 2, 4, 7, and 9). The additional hardening that occurs in the out-of-phase
axial-torsional loading is attributable to crystallographic slip in multiple directions, which is caused by

the rotation of the principal axes that occurs in out-of-phase loading (refs. 2, 9, and 19).

The von Mises criterionis a good estimatorofthe cyclicin-phasedeformationbehaviorof Haynes

188 at 760 °C. As can be seeninfigure15,allofthe in-phasedata fallon or justabove the Rarnberg-

Osgood fitto the cyclicaxialdata (A = 0).The torsional(A = oo)yon Mises equivalentdata show the

largestdeviationfrom the Ramberg-Osgood fitwith as much as a 10 percenthigherstressamplitude at

the same equivalentstrainamplitude.The maximum shearstress-strain,or Tresca approach,however,

almost always over estimatesthe amount ofcyclichardening in the in-phaseand axialexperiments

(fig.16).In the worst instance,the axialmaximum shearstressamplitude isover estimatedby

18 percent.

Both the von Mises and the Tresca approaches fail to adequately account for the extra hardening

observed in the out-of-phase axial-torsional experiments, especially those with a phase angle of 90 °

(figs. 17 and 18). The 90 ° out-of-phase experiments exhibit as much as 20 percent more hardening than
the Ramberg-Osgood fit to the cyclic axial data and as much as 15 percent more hardening than that

estimated by the maximum shear stress-strain or Tresca approach. Kanazawa et al. (ref. 2) accounted for

the additional hardening in the sinusoidal waveform, out-of-phase, axial-torsional experiments on 1 per-

cent Cr-Mo-V steel by using a rotation factor, which is a ratio of the shear strain range at 45 ° from the

maximum shear plane to the maximum shear strain range. This factor was an attempt to account for the
movement of dislocations within and across multiple crystallographic slip systems in the material. They

were able to correlate both the in- and out-of-phase cyclic deformation data to within the same scatter

band by using the rotation factor in conjunction with the maximum shear stress-strain (Tresca) approach.

For Haynes 188 at 760 °C, the yon Mises equivalent stress-strain curve, at least for the in-phase data,

appears to represent the cyclic deformation data better than the maximum shear stress-strain method.

Therefore, a method based on the yon Mises approach, with appropriate flow and hardening rules to

account for the phase angle dependent hardening, might be able to estimate the additional hardening

observed in the out-of-phase tests.



CONCLUSIONS

The cyclic deformation behavior of a wrought cobalt-base superalloy, Haynes 188, has been investi-

gated at 760 °C under various axial-torsional loading conditions. The following conclusions were drawn

from the study of hysteresis loops and cyclic hardening behaviors under different loading conditions.

1. Under in-phase (proportional) loading, the ratio of the imposed engineering shear to axial strain

amplitudes had little or no effect on the relative amounts of cycle dependent hardening in either the axial
or shear directions.

2. In out-of-phase (nonproportional) loading, for a given ratio of engineering shear to axial strain

amplitudes and phase angles ranging from 0 ° to 90 °, similar cycle dependent hardening trends were ob-
served for the axial and shear stress ranges. However, on an absolute basis, the largest stresses were ob-

served when the phase angle was 90 ° and the smallest stresses were observed when the phase angle was 0 °.

3. The amount of hardening exhibited by Haynes 188 at 760 °C and the shapes of the axial and tor-

sional hysteresis loops under out-of-phase axial-torsional loading were directly dependent on the phase

angle between the axial and engineering shear strain waveforms.

4. The equivalent stress-strain curve (yon Mises) estimated the cyclic stress response of Haynes 188

at 760 °C to within 10 percent under in-phase (proportional) axial-torsional loading. However, the

yon Mises equivalent stress-strain criterion underestimated the out-of-phase (nonproportional) cyclic

stress response by as much as 20 percent.

5. The maximum shear stress-strain (Tresca) criteria for Haynes 188 at 760 °C overestimated the
cyclic in-phase axial-torsional stress response by as much as 18 percent and underestimated the cyclic out-

of-phase axial-torsional stress response by as much as 15 percent.

6. When multiaxial loading conditions exist in a structure, the use of either the von Mises or the

Tresca criterion to estimate the cyclic deformation behavior does not always yield the actual cyclic defor-

mation behavior of the material, especially under out-of-phase loading.
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TABLE I.wAXIAL-TORSIONAL TEST MATRIX FOR

HAYNES 188 AT 760 °C

0 @

30*

60"

90"

0 0.86 1.73 3.46 m

7 2 6 2 7

1

2

9 =

_Two tests were performed with sinusoidal strain command

waveforms.

TABLE II.--MAXIMUM AND MINIMUM STRAINS AND STRESSES IN THE NEAR HALF-LIFE AXIAL AND TORSIONAL

HYSTERESIS LOOPS

[_k = 1.73.]

_b N N r

Axial strain,

percent

Maximum Minimum

0" 3000 6261 0.21 -0.20

30" 6000 12136 0.19 -0.20

60" 6000 11564 0.19 -0.19

90" 8000 16003 0.19 -0.20

Axial stress,

0",

MPa

Maximum Minimum

287 -279

277 -309

313 -310

345 -329

Engineering shear

strain,

%

percent

Maximum Minimum

0.35 -0.34

0.35 -0.35

0.35 -0.35

0.34 -0.34

Shear stress,

7",

MPa

Maximum Minimum

163 -168

186 -171

188 -187

211 -204

TABLE III.--RAMBERG-OSGOOD CONSTANTS FOR AXIAL AND SHEAR CYCLIC

STRESS-STRAIN CURVES UNDER VARIOUS LOADING CONDITIONS

MATERIAL: HAYNES 188 AT 760 °C

Loading

pax&meters

_b _ K',

MPa

0" 0 891

0" 1.73 1272

90" 1.73 2571

=From reference 18.

Ramberg-Osgood constants a

n' K;, n;
MPa

0.113 ..........

..... 589 0.142

0.259 604 0.262

0.238 1247 0.230

Stress at 0.5 percent

strain

o, r,

MPa MPa

450 ....

.... 232

290 131

563 256
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Figure 1 .--Geometry of thin-walled tubular specimen. All dimensions are in millimeters.
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Figure 2.--Schematic of loading waveforms for axial-torsional in-phase and out-of-phase tests.
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Rgure 3._Evolution of axial and torsional hysteresis loops, ,_ = 1.73, 0 = 0 °.
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Figure 4._Evd ution of axial and torsional hysteresis loops, X = 1.73, 0 = 30 °.
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Figure 5.--Evolution of axial and torsional hysteresis loops, A = 1.73, 0 = 60 =.
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Figure 6.BEvolution of axial and torsional hysteresis loops, k = 1.73, 0 = 90 °.
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Figure 7.--Cyclic variation of the normalized (to first cycle axial stress range) axial stress range of

in-phase experiments.
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Rgure 8.---Cyclic variation of the normalized (to first cycle shear stress range) shear stress range

of in-phase experiments.
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Figure 9.---Cyclic variation of axial stress range for out-of-phase experiments.
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Figure 10.--Cyclic variation of shear stress range for out-of-phase experiments.
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Figure 11 .--Normalized loops, X = 1.73, e = 0o; axial hysteresis loop, torsional hysteresis loop, axial strain versus engineering shear
strain, and axial stress versus shear stress.
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